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Duration: 1 hour.

In front of the questions one finds the points. The sum of the points plus 1 gives the
end mark for this test.

1. [1.5] Without actually computing the eigenvalues, localize the eigenvalues of the matrix
below using the Gershgorin theorems and general properties of the matrix,

2 −2 0 0 0
−1 2 −1 0 0
0 −2 2 0 0
0 0 −1 2 −1
0 0 0 −1 1

 .

Solution: Observe that the matrix is reducible, hence the eigenvalues of the ma-
trix are the union of the eigenvalues of the first 3x3 diagonal block and the last 2x2
diagonal block [0.5].

The 2x2 block is symmetric, hence its eigenvalues are real. The circles of the first
block all coincide. So also every point on the boundary can be an eigenvalue. So
the eigenvalues are on and inside the circle with center 2 and radius 2 [0.5].
In fact 0 and 4 are eigenvalues with eigenvectors [1;1;1] and [1;-1;1], respectively.

The last 2x2 block has two circles with radia 1 and 2 and 1 as centerpoints. There is
no point in common on the real axis so we have that the corresponding eigenvalues
will be in (0,3). [0.5] So concluding there will be 2 eigenvalues on (0,3) and 3 in
the circle with center 2 and radius 2.

2. (a) [1.5] Let µ be an eigenvalue ofA+E, moreover, A has a complete set of eigenvectors.
Show that

min
λ∈σ(A)

|λ− µ| ≤ C||E||

where the matrix norms used are induced by a vector norm and C > 0. Also give
C

Solution: We have (A+E)x = µx. Since, A has a complete set of eigenvector,
it is diagonizable. Let P−1AP = D, then we find by premultiplication of P−1

(D + P−1EP )P−1x = µP−1x

which is equivalent to

(D − µI)(P−1x) = −P−1EP (P−1x). [0.5]



Now we assume that µ is not equal to an eigenvalue of A, and hence (D−µI)
will be nonsingular. So we may write

P−1x = −(D − µI)−1P−1EP (P−1x)

Take norms and use associated inequalities to find

||P−1x|| ≤ ||(D − µI)−1|| κ(P ) ||E|| ||(P−1x)||

which is equivalent to

1 ≤ ||(D − µI)−1|| κ(P ) ||E||. [0.5]

Now it holds that the norm of a diagonal matrix is just the maximum element
in abs. sense on the diagonal. So ||(D − µI)−1|| = maxλ∈σ(A) 1/|λ − µ| =
1/minλ∈σ(A) |λ − µ|. After insertion into the last expression we just have to
multiply by minλ∈σ(A) |λ−µ| to get the desired expression. So C = κ(P ) [0.4].

Observe that for the case that µ is equal to an eigenvalue of A the inequality
is satisfied too [0.1].

(b) [0.5] What does the expression in the previous part mean?

Solution: It means that we can bound the perturbation in an eigenvalue by
the perturbation in A. Moreover, C is the condition number in this case.

3. (a) [1.0] Suppose the matrix A of order 100 has eigenvalues λi = i2, for i = 1, · · · 100. If
we apply shift 1000 in inverse iteration, to which eigenvector of A will the method
converge to?

Solution: The eigenvalues of the shifted and inverted matrix are 1/(i2−1000).
The eigenvalue of A closest to 1000 is 322 = 1024 and the next closest is
312 = 961. The power method will converge to the eigenvector associated to
the biggest eigenvalue of the shifted and and inverted matrix, which means for
λ32 = 1024 of the original matrix.

(b) [0.5] What is the speed of convergence?

Solution: The speed of convergence is the ratio of the one but largest and
the largest eigenvalue of the shifted and inverted matrix, which is in this case
24/39=8/13.

4. [1.0] Give the Householder matrix that transforms the matrix 2 −3 −4
−3 2 −1
−4 −1 2


into tridiagonal form and show how it is used. So you don’t need to make the matrix
tridiagonal, but merely convince us how this should be done.



Solution: In this case, we only have to deal with the last two entries of the first
column, i.e. u = −[3; 4]. We should map this on the x-axis by a mirroring. We
choose to map it to [5; 0]. From this the unnormalized v in H = I − 2vvT is
v̂ = [8; 4] = 4[2; 1] which has length 4

√
5. So we have v = 1√

5
[2; 1]. Now we have to

pre- and postmultiply by diag({1,H})[
1 0
0 H

] [
2 uT

u A22

] [
1 0
0 H

]
=

[
2 wT

w HA22H

]
.

This results in a matrix of shape  2 5 0
5 ∗ ∗
0 ∗ ∗


where the lower 2x2 block is

H

[
2 −1
−1 2

]
H.

5. Consider the three matrices below 2 1 0
1 3 1
0 1 4

 ,
 4.6792 .2979 0

.2979 3.0524 .0274
0 .0274 1.2684

 ,
 4.7104 .1924 0

.1924 3.0216 −.0115
0 −.0115 1.2680


which are respectively the original matrix and two subsequent iterates in the QR-
method. Moreover, it is given that the eigenvalues of the original matrix are 4.7321,
3.0 and 1.2679.

(a) [0.7] How is the QR-method defined? Where does it, for general real matrices,
converge to?

Solution: Set A(0) = A and perform for i = 0, 1, 2, 3, · · · the iteration: (i)
compute a QR-factorization of A(i) = A, giving Q(i) and R(i), (ii) Compute
A(i+1) = R(i)Q(i). For general matrices this converges to the real Schur form
of the matrix A, which may have some 2x2 blocks on the diagonal if the matrix
has complex eigenvalues.

(b) [0.6] Explain the reduction factor of the off-diagonal elements from the middle to
the right matrix.

Solution: The (2,1) coefficient should decrease by about λ2/λ1 ≈ 3/4.7 ≈ 0.6
as it does, and the (3,2) coefficient by λ3/λ2 ≈ 1.3/3 = 0.43 which it does too.

(c) [0.7] Suppose we apply a QR-step including shift to the middle matrix. By which
factor will the (3,2) element decrease approximately?



Solution: We will shift with the last element of the matrix and get the new
relevant eigenvalues: 4.73-1.27=3.46, 3.00-1.27=1.73, 1.2679-1.2684=-0.0005.
So the element (3,2) will decrease by a factor 5.e− 4/1.73 ≈ 3.e− 4.

6. [1.0] Show that the orthogonalization of the basis of the Krylov subspace for a real and
symmetric matrix A leads to its tridiagonal Galerkin approximation on that space.

Solution: For the orthogonalization we use the Gramm-Schmidt process during
the construction of the space. This amounts to the expression

A[v1 v2 · · · vm] = [v1 v2 · · · vm vm+1]Hm+1,m

where v1 is the given vector for the Krylov space. Moreover vm+1 is constructed
from Avm which is orthogonalized with respect to vi, i = 1, · · · ,m. Which leads to
a matrix Hm+1,m of Hessenberg form. If we now premultiply with the transpose of
[v1 v2 · · · vm] we obtain

[v1 v2 · · · vm]TA[v1 v2 · · · vm] = [I, 0]Hm+1,m = Hm,m

Since the left-hand side is symmetric also Hm,m must be symmetric. Since it also
is of Hessenberg form it must be tridiagonal.


